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 Background: Climate change is a major challenge for the sustainability of 

hydropower plants (PLTA) in tropical areas such as North Sulawesi, which 
are highly dependent on water availability from seasonal rainfall. 
Aims & Methods: This study aims to project the water discharge and 

electricity production of the Tonsealama, Tanggari I, and Tanggari II 
hydropower plants based on the SSP2-4.5 and SSP5-8.5 climate change 

scenarios. Historical climate data (2014–2024) from BMKG and 
hydropower plant operation data (2019–2024) are used to train the 
prediction model using the Random Forest algorithm, with bias correction 

performed on the CMIP6 GCM output through a hybrid approach 
combining Random Forest and Delta Change. 
Result: The results show a consistent decrease in discharge and energy at 

the three hydropower plants, especially in May, which has been the peak of 
the rainy season. The average annual discharge decrease reached 9%, while 
the decrease in electricity was recorded at 5,528.77 MWh (SSP2-4.5) and 

3,053.42 MWh (SSP5-8.5) for the Tonsealama hydropower plant; 8,085.37 
MWh and 12,625.98 MWh for PLTA Tanggari I; and the highest decline 

was experienced by PLTA Tanggari II of 18,160.42 MWh and 9,255.40 
MWh. Although higher warming occurs in the SSP5-8.5 scenario, 
occasional extreme rainfall events partially offset the decline in energy 

production. These findings emphasize the importance of adaptation 
strategies through more flexible reservoir management, turbine operations, 
and integrated water resource planning to increase system resilience to 

future climate uncertainty. 
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1. Introduction 

The North Sulawesi electricity system is a rapidly growing network; in 2024, the peak daytime load of 

443.9 MW grew 7.3% from 2023, and the peak nighttime load of 486.9 MW grew 7.2% from 2023. 

Hydroelectric Power Plants (PLTA) play an important role in this region, primarily through the Lake 

Tondano catchment system, which is the source for three main hydroelectric power plants: Tonsealama 

PLTA, Tanggari I PLTA, and Tanggari II PLTA. As a renewable energy source, hydroelectric power 

plants help reduce dependence on fossil fuels, but their production is highly dependent on the 

availability of water flow, making them vulnerable to climate variability. 

Historically, rainfall changes have significantly impacted the performance of Hydroelectric Power 

Plants (PLTA) in North Sulawesi. One extreme example occurred in 2019 when the capacity factor of 

the PLTA was recorded at only around 10% due to a very drastic decrease in rainfall (PLN UP2B 

Sistem Minahasa, 2019). This condition raises concerns about the worsening stability of the electricity 

supply in the future. Similar things are also seen in Sulawesi in general (Novitasari et al., 2023) and in 

West Java, where Perdinan et al. (2023) showed that rainfall and temperature variability affect the 

discharge and energy supply at the Saguling, Cirata, and Kracak PLTAs. These findings confirm that 

the risk of climate change to PLTA is a national issue that requires integrated adaptation. 

The impact of declining production has also been recorded in various hydroelectric power plants in 

the world, such as Bagré in Burkina Faso (Yangouliba et al., 2022), Sondu Miriu in Kenya (Ochieng et 

al., 2021), and Kulekhani in Nepal (Shrestha et al., 2021). These examples show that the impact of 

climate change on hydroelectric power plants is global and requires special attention in water resource 

management to ensure a sustainable electricity supply. Several studies have projected these impacts by 

combining global climate models (GCMs) and local hydrology, such as in the Kunhar River, Pakistan 

(Akbar et al., 2023); Taiwan (Chiang et al., 2013); and the multi-objective calibration approach 

proposed by Chilkoti (2019). Parkinson (2008) added that long-term energy planning must consider 

hydrological uncertainty not to overestimate hydroelectric power plant capacity and prevent the risk of 

energy supply shortages. However, most studies still focus on single power plants and rarely discuss 

the interactions between hydroelectric power plants in a cascade system, even though upstream-

downstream operational coordination significantly impacts discharge and production stability. 

This study aims to project the water discharge and energy production of Tonsealama, Tanggari I, 

and Tanggari II hydroelectric power plants based on the SSP2-4.5 and SSP5-8.5 scenarios using 

calibrated global climate data. The results are expected to provide an overview of climate change risks 

and become a reference for planning a more resilient North Sulawesi electricity system. 

 

2. Methods 

2.1 Study Area 

This study focuses on three hydroelectric power plants in one river system in North Sulawesi—

Tonsealama, Tanggari I, and Tanggari II—which form a cascade generation system where water from 

the upstream hydroelectric power plants flows to the downstream hydroelectric power plants. 

Tonsealama is located upstream, and its source is Lake Tondano, while Tanggari I and II receive flow 

from the previous power plants. All three are located in hilly areas with different altitudes, which affect 

discharge characteristics and energy potential. Because they are connected in one system, climate 

change or fluctuations in rainfall in the upstream will directly impact water availability in the 

downstream.  

 

2.2 Data Collection 

This study uses secondary data from official sources. Historical climate data (daily rainfall and 

temperature 2014–2024) were obtained from the Indonesian Agency for Meteorological, 
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Climatological, and Geophysics (BMKG) North Sulawesi Climatology Station, while historical 

discharge and electrical energy data 2019–2024 were from PLN NP UP Minahasa as a representation 

of the performance of the Tonsealama, Tanggari I, and Tanggari II hydroelectric power plants. For 

future climate projections, Global Climate Model (GCM) CMIP6 data for the SSP2-4.5 and SSP5-8.5 

scenarios from five selected models were used: CanESM5, GISS-E2-1-G, IPSL-CM6A-LR, MRI-

ESM2-0, and CNRM-CM6-1. SSP2-4.5 represents the medium radiation pathway with moderate 

development and mitigation policies, while SSP5-8.5 describes the highest emissions with rapid 

economic growth and fossil fuel dominance without significant restrictions (O’Neill et al., 2016). The 

selection of models was based on the evaluation results of Li et al. (2022), which assessed suitability 

for the Southeast Asian region and tropical rainforest zones. 

 

 
 

Figure 1. Map of the Tonsealama Hydroelectric Power Plant Catchment Area, Tanggari 1 and 

Tanggari 2. 

 

2.3 Climate Data Bias Correction 

GCM data generally has systematic bias towards local conditions, especially in tropical areas with 

complex topography such as North Sulawesi. Therefore, bias correction is carried out using a hybrid 

method that combines Random Forest Regression (baseline 2014–2024) and Delta Change (projection 

2041–2100). Random Forest is calibrated with predictor variables of month, year, rainfall, and 

temperature from GCM, while the target is BMKG observation data. The training data is expanded 

using GCM data from each model as augmented data. The calibrated model improves the distribution 

of baseline data before Delta Change is applied. Future climate projections are calculated as the 

difference (temperature) or percentage change (rainfall) between the projection and the baseline, then 

the delta value is applied to the observation data to produce bias-corrected projections (Navarro-

Racines et al., 2020): 

 
∆𝑋𝑖 = 𝑋𝐹𝑖

− 𝑋𝐶𝑖
       (1) 

∆𝑋𝑖 =
𝑋𝐹𝑖

− 𝑋𝐶𝑖

𝑋𝐶𝑖

     (2) 
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𝑋𝐷𝐶𝑖 = 𝑋𝑂𝐵𝑆𝑖
− ∆𝑋𝑖       (3) 

𝑋𝐷𝐶𝑖 = 𝑋𝑂𝐵𝑆𝑖
 × (1 + ∆𝑋𝑖)    (4) 

Where ∆𝑋𝑖 is the climate change/anomaly, 𝑋𝐹𝑖
 is the mean future climate of the model, 𝑋𝐶𝑖

 is the 

mean baseline of the model, 𝑋𝐷𝐶𝑖 is  the future value and 𝑋𝑂𝐵𝑆𝑖
 is the observed value (baseline).  

 

2.4 Modeling of Inflow Discharge and Hydroelectric Power Plant Energy 

Discharge prediction uses a machine learning approach using the Random Forest Regressor algorithm. 

The model is developed in three main stages referring to the method used by Obahoundje et al. (2024). 

 

a. RF1-The initial model is developed using all predictor variables, namely rainfall and 

temperature in the relevant month, as well as lagging variables, temperature up to 6 months 

previously and accumulated rainfall up to 12 months previously. Discharge or energy is used as 

the target variable. 

b. RF2 – The model is simplified by using only the five most important predictor variables based 

on the feature_importance attribute from the RF1 model. The variables used include current 

rainfall, temperature, and the most influential lagging combination on discharge or energy. 

c. RF3 – Residual tuning stage, where the model is trained to predict the residuals from the RF2 

results using the same variables. The residual values are then added back to the RF2 prediction 

results to improve the accuracy of the final model. 

 

To reduce the risk of overfitting, hyperparameter tuning was performed using 

RandomizedSearchCV with a 5-fold cross-validation scheme, where the data is divided into several 

subsets and tested alternately on previously untrained data. This approach helps select the optimal 

hyperparameter combination based on the average performance in the validation set so the model is 

stable on new data (Bergstra & Bengio, 2012). 

The model is then trained with historical data from 2019–2024 and used to predict discharge and 

energy in the projection period using bias-corrected climate data. Performance is evaluated using 

Pearson correlation, Mean Absolute Percentage Error (MAPE), and Normalized Root Mean Squared 

Error (nRMSE). Pearson correlation measures the linear relationship between predicted and observed 

discharge. Validation is done internally through cross-validation on historical data, while the projection 

period relies on the assumption that the pattern of discharge and climate parameter relationships 

remain consistent since future observation data are not yet available. Mathematically, the evaluation is 

done using (Obahoundje et al., 2022): 

 

𝐶𝑜𝑟𝑟 =
𝑛(∑ 𝑦𝑗�̅�𝑗)−(∑ 𝑦𝑗)(𝑁

𝑗=1 ∑ �̅�𝑗)𝑁
𝑗=1

𝑁
𝑗=1

√[𝑛 ∑ 𝑦𝑗
2𝑁

𝑗=1 −(∑ 𝑦𝑗
𝑁
𝑗=1 )2][𝑛 ∑ �̅�𝑗

2𝑁
𝑗=1 −(∑ �̅�𝑗

𝑁
𝑗=1 )2]

                (5) 

𝑀𝐴𝐸 =  
1

𝑁
∑ |𝑦𝑗 − 𝑦𝑗|𝑁

𝑗=1          (6) 

𝑀𝐴𝑃𝐸 =  
100

𝑁
∑

|𝑦𝑗−�̅�𝑗|

𝑦𝑗

𝑁
𝑗=1           (7) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦𝑗 − 𝑦𝑗)2𝑁

𝑗=1        (8) 

𝑛𝑅𝑀𝑆𝐸 =  
𝑅𝑀𝑆𝐸

𝜎
         (9) 

 

Where 𝐶𝑜𝑟𝑟 is the Pearson correlation, N is the number of samples, 𝑦𝑗 are the observed values, �̅� are 

the simulated/model values, 𝑗 is the date and 𝜎 is the standard deviation.  
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3. Results and Discussion 

3.1 Historical Climate Characteristics 

The analysis of climate characteristics is based on observation data of rainfall and air temperature from 

2014–2024 from the North Sulawesi Climatology Station. The interpolation and areal aggregation 

results show that the three hydroelectric power plant catchments—Tonsealama, Tanggari I, and 

Tanggari II—have uniform climate patterns (Figure 2) because they are located close together and in 

one hydrological system. 

The seasonal rainfall pattern shows two prominent peaks in November–December and April–May, 

and a minimum in July–August, by the climate character Af (tropical rainforest) according to Köppen. 

The average monthly rainfall ranges from 100 to 350 mm, with high inter-annual variability. Air 

temperature is relatively stable in the range of 22.5–23.7°C, with a peak in May and a low in January–

February. This temperature distribution reflects a consistent and humid tropical climate throughout the 

year, supporting the findings of Salim (2015) that areas with high altitudes and close distances tend to 

have homogeneous microclimates. 

 

 
Figure 2. Average monthly rainfall and temperature per hydroelectric power plant (2014-2024). 

 

3.2 GCM Climate Data Bias Correction 

Before being used in the discharge and energy modeling, data from five GCM models were adjusted to 

local conditions through bias correction using Random Forest Regression trained with BMKG 

observation data from 2014–2024. Models were developed separately for temperature and rainfall at 

each hydropower plant. The evaluation results showed that this method significantly reduced the 

deviation between GCM and observation data, with the correlation value of observed climate data with 

the corrected GCM reaching 0.843–0.902 and RMSE between 44.67–55.5 mm. The correlation above 

0.94 and the average error below 0.1°C indicate very good performance for temperature. 

The consistency of the results across locations and scenarios proves the effectiveness of this method 

in capturing spatial and seasonal patterns and improving the representation of extreme events such as 

floods and droughts (Luo et al., 2020). With a correlation approaching 0.9, climate projections are 

more reliable as a basis for adaptation planning, including turbine settings and mitigation of water 

shortages or excesses (Das et al., 2022). 
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Table 1. Results of climate data correction evaluation 

PLTA Scenario 

Rainfall Air Temperature 

Corr 
RMSE 

(mm) 

MAE 

(mm) 
Corr 

RMSE 

(°C) 

MAE 

(°C) 

Tonsealama SSP2-4.5 0.902 44.67 34.25 0.941 0.14 0.09 

Tonsealama SSP5-8.5 0.844 55.36 40.57 0.941 0.14 0.10 

Tanggari I SSP2-4.5 0.902 44.52 34.23 0.942 0.13 0.09 

Tanggari I SSP5-8.5 0.843 55.50 40.83 0.941 0.13 0.10 

Tanggari II SSP2-4.5 0.856 46.78 34.52 0.942 0.13 0.09 

Tanggari II SSP5-8.5 0.867 45.09 34.09 0.940 0.14 0.10 

 

3.3 Climate Change in the Study Area 

The probability distribution of monthly rainfall and temperature at the three hydropower plant 

locations shows a consistent shift in climate patterns in the future in both SSP2-4.5 and SSP5-8.5 

scenarios. Tonsealama, Tanggari I, and Tanggari II have similar distribution patterns, reflecting 

climate homogeneity because they are in one hydrological system (Figure 3). 

Temperature projections show an increasing trend in both scenarios. In SSP2-4.5, the average 

temperature increases from 23–24°C (2014–2024) to 24–25°C (2041–2060), and increases again in 

2081–2100. The increase is sharper in SSP5-8.5 with a peak temperature approaching 26–27°C by the 

end of the century, meaning the study area is projected to experience 2–3°C warming depending on the 

scenario. The widening distribution also indicates an increase in inter-monthly and inter-annual 

temperature variability. These projections are consistent with the IPCC (2023), which states that the 

tropics will experience significant land warming, strengthening the global hydrological cycle and 

increasing the risk of droughts and seasonal floods. 

 

 
Figure 3. Monthly climate distribution per hydroelectric power plant and scenario. 
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The distribution of precipitation shows a more complex pattern than temperature. SSP2-4.5 shows a 

slight shift to lower precipitation in 2081–2100, although most of the distribution still overlaps with the 

baseline. In SSP5-8.5, the distribution widens and shifts to the left, indicating an increase in the 

frequency of low rainfall (longer dry spells) but still the potential for high rainfall in the wet season. 

This increase in variability strengthens the pattern of seasonal extremes—shorter heavy rainfall and 

longer dry spells—in line with IPCC (2023) projections that predict increasing global rainfall intensity 

and variability by the end of the century. 

These shifts in temperature and rainfall indicate that the three hydroelectric power plants will face 

increasingly extreme and unstable climate conditions, especially in the high emission scenario. 

Although the total annual rainfall is relatively stable, its time distribution changes, so water availability 

is not in line with energy needs. This uncertainty has the potential to disrupt the reliability of electricity 

supply. Therefore, adaptation is needed through responsive water management and flexible power 

plant operations. 

 

3.4 Future Discharge Prediction 

3.4.1 Tonsealama Hydroelectric Power Plant 

The Tonsealama hydropower discharge prediction model performs well in all scenarios and 

development stages. Based on Table 2, the Pearson correlation value between predicted and observed 

discharge ranges from 0.76–0.83, with the highest accuracy at the RF3 stage (residual tuning). MAPE 

decreases to about 22%, and nRMSE remains below 0.16, indicating a low error in the hydrological 

context. These results confirm the effectiveness of residual tuning in capturing the relationship 

between climate and discharge and reducing bias. 

The monthly discharge projection of the Tonsealama hydropower plant (Figure 4) shows a decrease 

in both scenarios, especially in 2081–2100. The most significant decrease occurs in wet months such 

as April–May and December. However, in several months such as May, July, and August, the 

discharge of SSP5-8.5 is slightly higher than SSP2-4.5. 

Table 2. Evaluation of random forest algorithm to predict discharge of Tonsealama Hydroelectric 

Power Plant. 

Scenario Stage Pearson Correlation MAPE (%) nRMSE 

SSP2-4.5 

RF1 (all lagging) 0.774 24.3 0.164 

RF2 (current + 5 lagging) 0.762 23.7 0.168 

RF3 (residual tuning) 0.793 22.0 0.158 

SSP5-8.5 

RF1 (all lagging) 0.766 24.6 0.167 

RF2 (current + 5 lagging) 0.798 22.0 0.157 

RF3 (residual tuning) 0.830 19.7 0.145 

 
Figure 4. Monthly Discharge of Tonsealama Hydroelectric Power Plant per Period and Scenario 
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The rainfall distribution in the SSP5-8.5 scenario shows a rightward shift and widening of the upper 

tail (Figure 3), indicating an increase in extreme rainfall events (>400 mm/month), although the 

median remains the same. This explains the seasonal discharge spike amidst a declining or stagnant 

annual trend. This finding is supported by the IPCC (2023), Liang et al. (2022), and Hariadi et al. 

(2024), which noted an increase in extreme weather events in tropical regions, including Sulawesi. 

Obahoundje et al. (2022) also showed that combining high temperatures and extreme rainfall can 

increase monthly discharge variability. This condition reduces water volume and disrupts the stability 

of the energy supply, especially during the dry season. Therefore, high discharge fluctuations should 

be a concern in hydropower adaptation and operation strategies. 

 

3.4.2 Tanggari I Hydroelectric Power Plant 

The Random Forest model for PLTA Tanggari I shows consistent prediction performance with Pearson 

correlation between prediction results and observations reaching 0.83 at the RF3 stage in both 

scenarios. The residual tuning stage (RF3) improves accuracy, reducing MAPE by 19.6% and nRMSE 

by around 0.146 at SSP2-4.5, indicating the effectiveness of this method in correcting systematic 

mismatches. 

Monthly discharge projections (Figure 5) show a decreasing trend from the baseline (2019–2024) to 

the projection periods of 2041–2060 and 2081–2100 in both scenarios. The annual average discharge is 

estimated to decrease from around 7.22 m³/s to 6.72–6.73 m³/s (SSP2-4.5) and 6.75–6.69 m³/s (SSP5-

8.5). Interestingly, although extreme rainfall increases in the SSP5-8.5 scenario, the Tanggari I 

hydropower plant does not show a significant surge in discharge. This is likely due to the spatially 

limited extreme rainfall, which does not coincide with the peak flow, and the stagnant median rainfall. 

As a middle power plant in the cascade system, the Tanggari I discharge is also affected by the 

operation of upstream hydropower plants such as Tonsealama, including water retention in the 

reservoir. Bakri et al. (2024) emphasized that the regulation in upstream hydropower plants directly 

impacts the water supply downstream. Overall, the decrease in discharge in Tanggari I is consistent 

and less responsive to extreme rainfall, so adaptation needs to focus on seasonal water management 

and optimization of upstream flows. 

 

Table 3. Evaluation of random forest algorithm to predict discharge of Tanggari I Hydroelectric Power 

Plant 

Scenario Stage Pearson Correlation MAPE (%) nRMSE 

SSP2-4.5 

RF1 (all lagging) 0.827 21.0 0.151 

RF2 (current + 5 lagging) 0.814 21.1 0.156 

RF3 (residual tuning) 0.839 19.6 0.146 

SSP5-8.5 

RF1 (all lagging) 0.824 21.1 0.152 

RF2 (current + 5 lagging) 0.796 20.9 0.162 

RF3 (residual tuning) 0.828 18.9 0.151 
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Figure 5. Monthly discharge of Tanggari I Hydroelectric Power Plant per period and scenario. 

 

3.4.3 Tanggari II Hydroelectric Power Plant 

The Random Forest model for the Tanggari II Hydroelectric Power Plant showed stable and adequate 

performance. The Pearson correlation between prediction and observation results reached 0.83 at the 

RF3 stage for the SSP2-4.5 scenario and 0.84 for SSP5-8.5. The MAPE value was successfully 

suppressed to around 20%, and the nRMSE was around 0.15, indicating fairly good model accuracy in 

predicting discharge based on climate data and lagging variables. 

 

Table 4. Evaluation of random forest algorithm to predict discharge of Tanggari II Hydroelectric 

Power Plant. 

Scenario Stage Pearson Correlation MAPE (%) nRMSE 

SSP2-4.5 

RF1 (all lagging) 0.801 23.4 0.160 

RF2 (current + 5 lagging) 0.796 22.2 0.161 

RF3 (residual tuning) 0.827 20.2 0.150 

SSP5-8.5 

RF1 (all lagging) 0.804 25.0 0.158 

RF2 (current + 5 lagging) 0.794 22.5 0.162 

RF3 (residual tuning) 0.837 20.3 0.146 

 

The monthly discharge projections in Figure 6 show a consistent seasonal pattern. Annual discharge 

decreases compared to the baseline (2019–2024), but the difference is relatively moderate. In the 

SSP2-4.5 scenario, the annual average decreases from 9.10 m³/s to 8.34 and 8.21 m³/s. Interestingly, 

the annual discharge of SSP5-8.5 is actually higher, with an average of 8.76 m³/s. 

This difference reflects the influence of extreme rainfall on SSP5-8.5, as seen from the widening of 

the right tail of the rainfall distribution (Figure 3), although the peak decreases. This is in line with the 

IPCC (2023), Liang et al. (2022), and Hariadi et al. (2024), who reported the intensification of extreme 

rainfall in tropical regions. As a result, Tanggari II, as a downstream generator, can receive additional 

runoff from upstream, so the decrease in discharge in SSP5-8.5 is not always greater than SSP2-4.5. 

These findings emphasize the importance of considering spatial interactions and cascade system 

dynamics in assessing climate impacts on hydropower. 
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Figure 6. Monthly discharge of Tanggari II Hydroelectric Power Plant per period and scenario 

 

3.5 Future Energy Predictions 

3.5.1 Tonsealama Hydroelectric Power Plant 

The Tonsealama hydropower energy prediction model was built using the Random Forest algorithm 

using residual tuning. The evaluation results (Table 5) showed good performance, with increased 

accuracy from RF1 to RF3. In RF3, the Pearson correlation between predicted and observed energy 

reached 0.883 (SSP2-4.5) and 0.837 (SSP5-8.5), with MAPE of 16.5–19.7% and nRMSE of 0.120–

0.139. This indicates that the model is able to capture the non-linear relationship between climate and 

energy with acceptable accuracy. 

Annual energy production projections decrease due to climate change. The decrease is calculated 

from the difference between predicted energy production and the 2019–2024 baseline. Table 6 shows a 

decrease in SSP2-4.5 of -3,065.88 MWh/year (2041–2060) and -2,462.89 MWh/year (2081–2100). 

SSP5-8.5, the decrease is smaller, namely -1,400.01 MWh/year, and even increases by 1,653.41 

MWh/year. This shows that although SSP5-8.5 projects more extreme warming, the frequency of 

extreme rainfall seems to compensate for the decrease in annual discharge. 

 

Table 5. Evaluation of random forest algorithm to predict energy production of Tonsealama 

Hydroelectric Power Plant 

Scenario Stage Pearson Correlation MAPE (%) nRMSE 

SSP2-4.5 

RF1 (all lagging) 0.804 22.6 0.151 

RF2 (current + 5 lagging) 0.853 19.0 0.133 

RF3 (residual tuning) 0.883 16.5 0.120 

SSP5-8.5 

RF1 (all lagging) 0.779 24.3 0.159 

RF2 (current + 5 lagging) 0.803 21.9 0.152 

RF3 (residual tuning) 0.837 19.7 0.139 

 

The largest monthly energy decline occurred in May, reaching -1,000 MWh in all scenarios and 

periods. However, SSP5-8.5 shows an increase in energy in certain months, such as November and 

December, to +435 MWh (Figure 7). The sharper inter-month variability in SSP5-8.5 indicates a 

change in seasonal patterns, affecting total production and energy supply reliability in certain seasons. 

This pattern is in line with IPCC (2023), Hariadi et al. (2024), and Obahoundje et al. (2022), which 

show that extreme rainfall can trigger seasonal production spikes even though annual production 

decreases. This change in time distribution poses a challenge to match supply with load. Overall, 

projections show that climate change is reducing the annual production of Tonsealama hydropower 

while changing seasonal patterns, requiring adaptations in reservoir management, turbine operations, 

and reserve supply. 
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Table 6. Decrease in energy production of Tonsealama Hydroelectric Power Plant (MWh) 

Month 
SSP 2-4.5 SSP 5-8.5 

2041-2060 2081-2100 2041-2060 2081-2100 

January -323.68 -155.84 37.82 40.69 

February -117.64 -103.31 203.83 232.34 

March -383.91 -412.25 -260.42 -254.74 

April -355.10 -448.64 -469.01 -548.59 

May -972.68 -975.17 -1,060.55 -1,051.80 

June 80.80 -20.81 -15.82 77.93 

July -365.97 -231.91 -208.07 -121.07 

August -145.84 -88.13 -85.33 19.25 

September -87.16 25.22 166.54 206.25 

October -208.01 -147.78 106.86 -35.78 

November 119.98 254.20 435.58 235.82 

December -306.65 -158.48 -251.43 -453.71 

Grand Total -3,065.88 -2,462.89 -1,400.01 -1,653.41 

 

 

 
Figure 7. Percentage of monthly energy decrease of Tonsealama Hydroelectric Power Plant. 

 

3.5.2 Tanggari I Hydroelectric Power Plant 

The energy prediction model of Tanggari I hydropower plant showed good and consistent performance 

in both climate scenarios (Table 7). The residual tuning approach (RF3) produced a Pearson 

correlation between prediction and observation results of 0.873 for SSP2-4.5 and 0.838 for SSP5-8.5, 

with MAPE ranging from 18.1–19.1% and nRMSE ranging from 0.113–0.135, indicating the model's 

ability to capture non-linear patterns between climate variables and energy production. 

 

Table 7. Evaluation of random forest algorithm to predict energy production of Tanggari I 

Hydroelectric Power Plant 

Scenario Stage Pearson Correlation MAPE (%) nRMSE 

SSP2-4.5 

RF1 (all lagging) 0.856 20.1 0.120 

RF2 (current + 5 lagging) 0.854 19.5 0.120 

RF3 (residual tuning) 0.873 18.1 0.113 

SSP5-8.5 
RF1 (all lagging) 0.842 21.9 0.125 

RF2 (current + 5 lagging) 0.811 21.2 0.135 
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RF3 (residual tuning) 0.838 19.1 0.127 

 

Projections show significant annual energy production declines in SSP2-4.5, up to –11.1% (2041–

2060) and –9.7% (2081–2100) (Figure 8), while in SSP5-8.5 the declines are more moderate (–5.3% to 

–5.5%) as extreme precipitation balances losses due to high temperatures. 

 

Table 8. Decrease in energy production of Tanggari I Hydroelectric Power Plant (MWh) 

Bulan 
SSP 2-4.5 SSP 5-8.5 

2041-2060 2081-2100 2041-2060 2081-2100 

January -577.19 -215.05 -506.39 -594.19 

February -415.80 -38.91 -123.61 -175.57 

March -495.68 -412.94 -606.36 -699.12 

April -601.85 -687.68 -861.47 -1,060.78 

May -1,552.15 -1,606.36 -1,924.91 -1,875.65 

June -334.58 -514.42 -769.73 -697.59 

July -331.50 -152.01 -580.65 -457.06 

August 253.87 313.85 -110.14 -47.52 

September 99.25 272.49 -0.52 -70.29 

October -423.76 -438.05 -349.82 -482.26 

November 349.59 470.09 554.70 252.93 

December -592.45 -454.15 -525.72 -914.26 

Grand Total -4,622.23 -3,463.14 -5,804.62 -6,821.36 

 

Seasonally, the largest energy decline occurred in March-May, especially in May, which dropped by 

more than -1,500 MWh. Several months, such as August–September, had increased at SSP2-4.5 but 

were inconsistent at SSP5-8.5, which generally decreased throughout the year. This reflects unstable 

water redistribution due to evaporation and rainfall fluctuations, in accordance with Obahoundje et al. 

(2022), and emphasizes the need for operational adaptation through load management and water 

release. 

 
Figure 8. Percentage of monthly energy reduction of Tanggari I Hydroelectric Power Plant 

 

3.5.3 Tanggari II Hydroelectric Power Plant 

The electricity prediction model of the Tanggari II hydroelectric power plant showed quite good 

performance (Table 9), with the Random Forest residual tuning approach producing the highest 

accuracy at the RF3 stage. The Pearson correlation between the prediction and observation results was 

recorded at 0.888 (SSP2-4.5) and 0.875 (SSP5-8.5), while MAPE and nRMSE decreased by 17.6–

17.7% and 0.113–0.137, respectively, indicating a reliable model for climate-based energy projections. 
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Projections show a significant decline in annual energy production of the Tanggari II hydropower 

plant at SSP2-4.5, namely –8,940.9 MWh/year (2041–2060) and –9,219.51 MWh/year (2081–2100) 

(Table 10). In contrast, at SSP5-8.5, the decline is more moderate, –4,517.95 to –4,737.46 MWh/year, 

because extreme rainfall helps balance losses due to high temperatures. 

The largest decline occurred in April–May, exceeding -1,300 MWh/year, while October–November 

at SSP5-8.5 showed small fluctuations. This pattern reflects the influence of seasonal rainfall and water 

release from upstream. Overall, Tanggari II experienced the highest energy decline, supporting the 

findings of Mtilatila et al. (2020) that downstream power plants are more vulnerable because they 

depend on water supply from upstream. This decline in energy production also has the potential to 

affect the stability of electricity supply for the industrial and household sectors in the surrounding area, 

although a detailed socio-economic risk analysis has not been the focus of this study. 

 

Table 9. Evaluation of random forest algorithm to predict energy production of Tanggari II 

Hydroelectric Power Plant 
Scenario Stage Pearson Correlation MAPE (%) nRMSE 

SSP2-4.5 

RF1 (all lagging) 0,831 21,8 0,137 
RF2 (current + 5 lagging) 0,867 19,1 0,123 

RF3 (residual tuning) 0,888 17,6 0,113 

SSP5-8.5 

RF1 (all lagging) 0,820 22,5 0,141 

RF2 (current + 5 lagging) 0,847 19,5 0,131 
RF3 (residual tuning) 0,875 17,7 0,119 

 

Table 10. Decrease in energy production of Tanggari II Hydroelectric Power Plant (MWh) 
Bulan  SSP 2-4.5 SSP 5-8.5 

2041-2060 2081-2100 2041-2060 2081-2100 

January -987,83 -1.049,05 -516,56 -449,91 
February -317,30 -674,41 8,77 16,73 

March -523,03 -889,20 -551,45 -690,66 
April -1.378,34 -1.344,50 -1.273,84 -1.360,29 
May -1.417,88 -1.396,49 -1.402,18 -1.360,27 
June -704,89 -858,97 -323,66 -66,80 
July -928,76 -792,27 -666,55 -268,31 

August -301,63 -301,02 -630,73 -562,67 
September -131,74 68,30 108,56 -147,39 

October -705,36 -758,45 190,80 -136,35 
November -234,07 -88,03 613,20 321,06 
December -1.310,06 -1.135,41 -74,30 -32,59 

Grand Total -8.940,90 -9.219,51 -4.517,95 -4.737,46 
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Figure 9. Percentage of monthly energy decrease of Tanggari II Hydroelectric Power Plant. 

 

4. Conclusions 

Climate change is expected to reduce water availability and energy production at the cascade 

hydroelectric power plants in North Sulawesi. Based on the projections of the SSP2-4.5 and SSP5-8.5 

scenarios with CMIP6 GCM data, the three hydroelectric power plants (Tonsealama, Tanggari I, and 

Tanggari II) are projected to experience seasonal and annual discharge decreases that have a direct 

impact on energy production. The lowest average discharge decreases occurred in Tonsealama (1–

5.1%), Tanggari I (8–9%), and Tanggari II (5–9%), with the largest monthly decrease in May, reaching 

around 20% in all scenarios. Regarding energy, Tonsealama decreased by around 3,000–5,500 MWh, 

Tanggari I 8,000–12,600 MWh, and Tanggari II experienced the highest decrease, 9,200–18,100 

MWh. The Random Forest model showed good accuracy with Pearson correlation 0.76–0.88, MAPE 

<22%, and nRMSE <0.16, proving the effectiveness of residual tuning for discharge and energy 

projections. These findings emphasize the importance of an integrated adaptation strategy to maintain 

supply reliability, especially in the dry season. In the future, it is recommended to use long-term 

observation data, develop more detailed hydrological models with additional variables, and study 

socio-economic impacts to support appropriate adaptation policies. The results of this study are also 

helpful for hydropower operators to design more adaptive reservoir operations and open up 

opportunities for developing real-time discharge and energy prediction systems to support daily 

decision-making. 
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