Web-Based Expert System for Dragon Fruit Disease Diagnosis Using Bayes Method
Main Article Content
Dionisius Raffi Koa
Sisilia Daeng Bakka Mau
Alfry Aristo Jansen Sinlae
Dragon fruit cultivation in Kampung Daun Baumata has faced significant challenges due to plant diseases, with farmers reporting a 15% yield reduction in 2022. This study addresses this critical agricultural problem by developing an innovative web-based expert system that utilizes Bayesian probability theory for accurate and timely disease diagnosis. The system provides farmers and agricultural stakeholders with an accessible digital tool to identify common dragon fruit diseases, including stem rot, anthracnose, and fungal infections, through symptom analysis and probability calculations. Implemented using PHP programming language and MySQL database, the expert system offers several advantages over traditional diagnostic methods. It operates independently of human experts, delivers real-time results, and provides prevention recommendations. The Bayesian approach enables the system to process uncertain information and update disease probabilities as new symptom data becomes available, significantly improving diagnostic accuracy compared to conventional methods. Field testing demonstrates the system's effectiveness in supporting farmers' decision-making processes, enabling early disease detection, and facilitating appropriate treatment measures. The implementation of this technological solution has the potential to reduce economic losses, improve crop yields, and promote sustainable farming practices in dragon fruit cultivation. By bridging the gap between farmers and agricultural expertise, this research contributes to the digital transformation of agricultural disease management in developing regions.
Anitha, G., Swaminathan, M. S., Viswanath, M., & Latha, P. (2023). Dragon fruit: A review of health benefits and nutritional importance. The Pharma Innovation Journal, 12(1), 326–331. https://doi.org/10.22271/TPI.2023.V12.I1D.18005
Balendres, M. A., & Bengoa, J. C. (2019). Diseases of dragon fruit (Hylocereus species): Etiology and current management options. Crop Protection, 126, 104920. https://doi.org/10.1016/J.CROPRO.2019.104920
Drury, B., Valverde-Rebaza, J., Moura, M. F., & de Andrade Lopes, A. (2017). A survey of the applications of Bayesian networks in agriculture. Engineering Applications of Artificial Intelligence, 65, 29–42. https://doi.org/10.1016/J.ENGAPPAI.2017.07.003
Hendra Kurniawan, M. R. A. (2021). Sistem Pakar Menggunakan Metode Certainty Factor untuk Mendiagnosa Hama dan Penyakit pada Tanaman Cabai. Respati, 16(2), 38. https://doi.org/10.35842/JTIR.V16I2.399
Indumathi, K., Preshika, S., & Vishal, S. P. S. (2025). Early Warning Prediction System for Agriculture Using Deep Learning. Communications in Computer and Information Science, 2360 CCIS, 71–80. https://doi.org/10.1007/978-3-031-82389-3_6
Kabu, M., Ngaga, E., & Sinlae, A. A. J. (2023). Penerapan Certainty Factor dalam Diagnosa Penyakit Gigi dan Mulut Berbasis Web di Puskesmas Halilulik. JUKI: Jurnal Komputer Dan Informatika, 5(1), 110–123. https://www.ioinformatic.org/index.php/JUKI/article/view/184
Kamrani, K., Roozbahani, A., & Hashemy Shahdany, S. M. (2020). Using Bayesian networks to evaluate how agricultural water distribution systems handle the water-food-energy nexus. Agricultural Water Management, 239, 106265. https://doi.org/10.1016/J.AGWAT.2020.106265
Lado, A. J., Sooai, A. G., Mamulak, N. M. R., Nani, P. A., Bria, Y. P., Batarius, P., & ... (2021). Comparison of Neural Network and Random Forest Classifier Performance on Dragon Fruit Disease. 2021 International Electronics Symposium (IES), 287–291.
Lelo, Y., Daeng, S., Mau, B., Aristo, A., & Sinlae, J. (2023). Sistem Pakar Diagnosa Penyakit Tanaman Buncis di Kelompok Tani Dabalulik Desa Kabuna Berbasis Web. Jurnal Informatika Polinema, 10(1). https://doi.org/10.33795/JIP.V10I1.1470
Li, D., Liu, Y., Chen, Y., Bi, C., & Chen, G. (2011). Bayesian Networks Modeling for Crop Diseases. IFIP Advances in Information and Communication Technology, 344 AICT(PART 1), 312–320. https://doi.org/10.1007/978-3-642-18333-1_37
Martínez-Rodríguez, P., Guerrero-Rubio, M. A., Henarejos-Escudero, P., García-Carmona, F., & Gandía-Herrero, F. (2022). Health-promoting potential of betalains in vivo and their relevance as functional ingredients: A review. Trends in Food Science and Technology, 122, 66–82. https://doi.org/10.1016/j.tifs.2022.02.020
Maulana, R., Maulana, R., & Arifin, T. (2023). Sistem Pakar Diagnosa Penyakit Tanaman Buah Naga Dengan Metode Euclidean Probability. Jurnal Nasional Komputasi Dan Teknologi Informasi (JNKTI), 6(4), 492–499. https://doi.org/10.32672/jnkti.v6i4.6455
Nugroho, A., Ahmad, N., Radjawane, L. E., Efendi, Y., Ningsih, S. R., Sinlae, A. A. J., Rianto, B., Darwas, R., Adriyendi, As’ad, I., S, W., & Yahya, S. R. (2021). Sistem Pakar dan Implementasi Metodenya (A. Rakhman (ed.)). Nuta Media.
Ramadhan, P. S. (2020). Penerapan Euclidean Probability dalam Mendiagnosis Atopik Dermatis. Jurnal Teknologi Informasi Dan Ilmu Komputer, 7(5), 887–894. https://doi.org/10.25126/JTIIK.2020752023
Riyawan, A., Muharni, S., & Syaputra, M. A. (2019). Penerapan Metode Certainty Factor Untuk Diagnosa Penyakit Tanaman Buah Naga. International Research on Big-Data and Computer Technology: I-Robot, 3(1). https://doi.org/10.53514/IR.V3I1.113
Rojas-Sandoval, J., & Praciak, A. (2021). Hylocereus undatus (dragon fruit). CABI Compendium. https://doi.org/10.1079/CABICOMPENDIUM.27317
S, A. K. (2024). Exploring kamalam fruit (Hylocereus spp.): Cultivation, Nutritional Value, and Health Benefits. A Review. Innovare Journal of Agricultural Sciences, 12(2), 1–7. https://doi.org/10.22159/IJAGS.2024V12I2.49700
Verona-Ruiz, A., Urcia-Cerna, J., & Paucar-Menacho, L. M. (2020). Pitahaya (Hylocereus spp.): Culture, physicochemical characteristics, nutritional composition, and bioactive compounds. Scientia Agropecuaria, 11(3), 439–453. https://doi.org/10.17268/SCI.AGROPECU.2020.03.16
Dionisius Raffi Koa , Widya Mandira Catholic University, Indonesia
Computer Science Study Program, Faculty of Engineering, Widya Mandira Catholic University, Indonesia
Sisilia Daeng Bakka Mau , Widya Mandira Catholic University, Indonesia
Computer Science Study Program, Faculty of Engineering, Widya Mandira Catholic University, Indonesia
Alfry Aristo Jansen Sinlae , Widya Mandira Catholic University, Indonesia
Computer Science Study Program, Faculty of Engineering, Widya Mandira Catholic University, Indonesia