Using SoilGrids250m for Overlooking Spatial and Vertical Distribution of Soil Physico-chemical Properties Over Tropical Climate Asia
Main Article Content
Umi Munawaroh
Muhamad Khoiru Zaki
Background: Understanding the interaction, spatial and vertical distribution of soil chemical properties over climate type in tropical Asia and various depths of soil is essential for sustainable land management, particularly in regions experiencing dynamic conditions.
Aims & Methods: This study investigates the relationships of each parameter such as cation exchange capacity (CEC), soil pH, and soil organic carbon (SOC) tropical Climate Asia. Using stratified random sampling based on Köppen–Geiger climate classifications and a consistent spatial resolution of 0.25° × 0.25°, we analyzed 45 sample points distributed across tropical rainforest, monsoon, and savanna climates. The data were extracted from SoilGrids 250m and reconciled using conservative remapping and bilinear interpolation techniques. Corresponding soil chemical data were obtained from validated regional databases.
Result: The results show that a correlation matrix analyzing relationships among key soil physico-chemical properties across multiple depths. Strong positive correlations were found between soil organic carbon (SOC) and total nitrogen (N) (r > 0.8), reflecting their shared origin in organic matter. Bulk density (BD) exhibited moderate to strong negative correlations with SOC and N (r ≈ -0.5 to -0.8), particularly in surface layers, indicating the influence of organic matter on soil structure. Correlations weaken with depth, reflecting reduced nutrient interaction. These patterns highlight the importance of organic matter inputs and minimal soil disturbance in maintaining soil health and guiding sustainable land management strategies.
Abdelrahman, H., Cocozza, C., Olk, D. C., Ventrella, D., Montemurro, F., & Miano, T. (2020). Changes in Labile Fractions of Soil Organic Matter During the Conversion to Organic Farming. Journal of Soil Science and Plant Nutrition, 20(3), 1019–1028. https://doi.org/10.1007/s42729-020-00189-y
Arrouays, D., McBratney, A., Bouma, J., Libohova, Z., Richer-de-Forges, A. C., Morgan, C. L. S., Roudier, P., Poggio, L., & Mulder, V. L. (2020). Impressions of digital soil maps: The good, the not so good, and making them ever better. Geoderma Regional, 20, e00255. https://doi.org/10.1016/j.geodrs.2020.e00255
Baltensweiler, A., Walthert, L., Hanewinkel, M., Zimmermann, S., & Nussbaum, M. (2021). Machine learning based soil maps for a wide range of soil properties for the forested area of Switzerland. Geoderma Regional, 27, e00437. https://doi.org/10.1016/j.geodrs.2021.e00437
Barrow, N. J., & Hartemink, A. E. (2023). The effects of pH on nutrient availability depend on both soils and plants. Plant and Soil, 487(1–2), 21–37. https://doi.org/10.1007/s11104-023-05960-5
Bhattacharyya, S. S., Ros, G. H., Furtak, K., Iqbal, H. M. N., & Parra-Saldívar, R. (2022). Soil carbon sequestration – An interplay between soil microbial community and soil organic matter dynamics. Science of The Total Environment, 815, 152928. https://doi.org/10.1016/j.scitotenv.2022.152928
Bi, X., Chu, H., Fu, M., Xu, D., Zhao, W., Zhong, Y., Wang, M., Li, K., & Zhang, Y. (2023). Distribution characteristics of organic carbon (nitrogen) content, cation exchange capacity, and specific surface area in different soil particle sizes. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-38646-0
Crnobrna, B., Llanqui, I. B., Cardenas, A. D., & Panduro Pisco, G. (2022). Relationships between Organic Matter and Bulk Density in Amazonian Peatland Soils. Sustainability, 14(19), 12070. https://doi.org/10.3390/su141912070
Diaz-Gonzalez, F. A., Vuelvas, J., Correa, C. A., Vallejo, V. E., & Patino, D. (2022). Machine learning and remote sensing techniques applied to estimate soil indicators – Review. Ecological Indicators, 135, 108517. https://doi.org/10.1016/j.ecolind.2021.108517
Guan, Q., Tang, J., Feng, L., Olin, S., & Schurgers, G. (2023). Long-term changes of nitrogen leaching and the contributions of terrestrial nutrient sources to lake eutrophication dynamics on the Yangtze Plain of China. Biogeosciences, 20(8), 1635–1648. https://doi.org/10.5194/bg-20-1635-2023
Guo, B.-X., Zhou, J., Zhan, L.-Q., Wang, Z.-Y., Wu, W., & Liu, H.-B. (2024). Spatial and Temporal Variability of Soil pH, Organic Matter and Available Nutrients (N, P and K) in Southwestern China. Agronomy, 14(8), 1796. https://doi.org/10.3390/agronomy14081796
Hailegnaw, N. S., Mercl, F., Pračke, K., Száková, J., & Tlustoš, P. (2019). Mutual relationships of biochar and soil pH, CEC, and exchangeable base cations in a model laboratory experiment. Journal of Soils and Sediments, 19(5), 2405–2416. https://doi.org/10.1007/s11368-019-02264-z
Hartemink, A. E., & Barrow, N. J. (2023). Soil pH - nutrient relationships: The diagram. Plant and Soil, 486(1–2), 209–215. https://doi.org/10.1007/s11104-022-05861-z
Hengl, T., De Jesus, J. M., MacMillan, R. A., Batjes, N. H., Heuvelink, G. B. M., Ribeiro, E., Samuel-Rosa, A., Kempen, B., Leenaars, J. G. B., Walsh, M. G., & Gonzalez, M. R. (2014). SoilGrids1km—Global Soil Information Based on Automated Mapping. PLoS ONE, 9(8), e105992. https://doi.org/10.1371/journal.pone.0105992
Hengl, T., Mendes De Jesus, J., Heuvelink, G. B. M., Ruiperez Gonzalez, M., Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M. N., Geng, X., Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A., Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., & Kempen, B. (2017). SoilGrids250m: Global gridded soil information based on machine learning. PLOS ONE, 12(2), e0169748. https://doi.org/10.1371/journal.pone.0169748
Hovhannissian, G., Podwojewski, P., Le Troquer, Y., Mthimkhulu, S., & Van Antwerpen, R. (2019). Mapping spatial distribution of soil properties using electrical resistivity on a long term sugarcane trial in South Africa. Geoderma, 349, 56–67. https://doi.org/10.1016/j.geoderma.2019.04.037
Huang, S., Li, Z., Yu, J., Feng, J., Hou, H., & Chi, R. (2021). Vertical distribution and occurrence state of the residual leaching agent (ammonium sulfate) in the weathered crust elution-deposited rare earth ore. Journal of Environmental Management, 299, 113642. https://doi.org/10.1016/j.jenvman.2021.113642
Ismail, S. M., Almulhim, N., Sedky, A., El-Cossy, S. A.-N., & Mahmoud, E. (2025). Impact of Soil Ameliorants on Soil Chemical Characteristics, Sugar Beet Water Productivity, and Yield Components in Sandy Soils Under Deficit Irrigation. Sustainability, 17(4), 1513. https://doi.org/10.3390/su17041513
Lai, C., Hu, Q., Sun, J., Li, C., Chen, X., Chen, B., Xue, X., Chen, J., Hou, F., Xu, G., Du, W., Stevens, C., Peng, F., & Zhou, J. (2024). Varying soil moisture and pH with alpine meadow degradation affect nitrogen preference of dominant species. Biology and Fertility of Soils, 60(8), 1041–1053. https://doi.org/10.1007/s00374-024-01853-6
Li, X., Li, B., Wang, C., Chen, Y., & Ma, P. (2020). Effects of Long-Term Fertilization on Different Nitrogen Forms in Paddy along Soil Depth Gradient. American Journal of Plant Sciences, 11(12), 2031–2042. https://doi.org/10.4236/ajps.2020.1112143
Libohova, Z., Mancini, M., Winzeler, H. E., Read, Q. D., Sun, N., Beaudette, D., Williams, C., Blackstock, J., Silva, S. H. G., Curi, N., Adhikari, K., Ashworth, A., Minai, J. O., & Owens, P. R. (2024). Interpreting the spatial distribution of soil properties with a physically-based distributed hydrological model. Geoderma Regional, 39, e00863. https://doi.org/10.1016/j.geodrs.2024.e00863
Ma, D., He, Z., Zhao, W., Li, R., Sun, W., Wang, W., Lin, P., Wei, L., & Ju, W. (2024). Long-term effects of conventional cultivation on soil cation exchange capacity and base saturation in an arid desert region. Science of The Total Environment, 949, 175075. https://doi.org/10.1016/j.scitotenv.2024.175075
Munny, N. N., Khan, Md. Z., & Hanif, M. (2021). Vertical distribution of soil properties and organic carbon under different land use systems in saline soils of Bangladesh. Environmental Challenges, 4, 100097. https://doi.org/10.1016/j.envc.2021.100097
Niu, C., Weng, L., Lian, W., Zhang, R., Ma, J., & Chen, Y. (2023). Carbon sequestration in paddy soils: Contribution and mechanisms of mineral-associated SOC formation. Chemosphere, 333, 138927. https://doi.org/10.1016/j.chemosphere.2023.138927
Panagos, P., De Rosa, D., Liakos, L., Labouyrie, M., Borrelli, P., & Ballabio, C. (2024). Soil bulk density assessment in Europe. Agriculture, Ecosystems & Environment, 364, 108907. https://doi.org/10.1016/j.agee.2024.108907
Poggio, L., De Sousa, L. M., Batjes, N. H., Heuvelink, G. B. M., Kempen, B., Ribeiro, E., & Rossiter, D. (2021). SoilGrids 2.0: Producing soil information for the globe with quantified spatial uncertainty. SOIL, 7(1), 217–240. https://doi.org/10.5194/soil-7-217-2021
Qiao, J., Zhu, Y., Jia, X., Huang, L., & Shao, M. (2018). Vertical distribution of soil total nitrogen and soil total phosphorus in the critical zone on the Loess Plateau, China. CATENA, 166, 310–316. https://doi.org/10.1016/j.catena.2018.04.019
Qiu, J., Khalloufi, S., Martynenko, A., Van Dalen, G., Schutyser, M., & Almeida-Rivera, C. (2015). Porosity, Bulk Density, and Volume Reduction During Drying: Review of Measurement Methods and Coefficient Determinations. Drying Technology, 33(14), 1681–1699. https://doi.org/10.1080/07373937.2015.1036289
Sainju, U. M., & Liptzin, D. (2022). Relating soil chemical properties to other soil properties and dryland crop production. Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.1005114
Tian, Z., Ren, T., Horton, R., & Heitman, J. L. (2020). Estimating soil bulk density with combined commercial soil water content and thermal property sensors. Soil and Tillage Research, 196, 104445. https://doi.org/10.1016/j.still.2019.104445
Topa, D., Cara, I. G., & Jităreanu, G. (2021). Long term impact of different tillage systems on carbon pools and stocks, soil bulk density, aggregation and nutrients: A field meta-analysis. CATENA, 199, 105102. https://doi.org/10.1016/j.catena.2020.105102
Wang, C., & Kuzyakov, Y. (2024). Soil organic matter priming: The PH effects. Global Change Biology, 30(6). https://doi.org/10.1111/gcb.17349
Wang, Y., Zhang, P., Sun, H., Jia, X., Zhang, C., Liu, S., & Shao, M. (2022). Vertical patterns and controlling factors of soil nitrogen in deep profiles on the Loess Plateau of China. CATENA, 215, 106318. https://doi.org/10.1016/j.catena.2022.106318
Wang, Z., Wang, Y., Peng, F., Xing, D., Lin, L., & Feng, W. (2025). Comparison of soil exchangeable calcium estimated using five extractants and near-infrared spectroscopy. Geoderma Regional, 40, e00911. https://doi.org/10.1016/j.geodrs.2024.e00911
Wenzhu, Y., Hu, Y., Song, C., Yu, Y., & Jiao, Y. (2023). Interactive effects of soil moisture, nitrogen fertilizer, and temperature on the kinetic and thermodynamic properties of ammonia emissions from alkaline soil. Atmospheric Pollution Research, 14(7), 101805. https://doi.org/10.1016/j.apr.2023.101805
Yang, P., Dong, W., Heinen, M., Qin, W., & Oenema, O. (2022). Soil Compaction Prevention, Amelioration and Alleviation Measures Are Effective in Mechanized and Smallholder Agriculture: A Meta-Analysis. Land, 11(5), 645. https://doi.org/10.3390/land11050645
Yeung, C. C., Bugmann, H., Hagedorn, F., Moreno Duborgel, M., & Díaz-Yáñez, O. (2025). How does nitrogen control soil organic matter turnover and composition? – Theory and model. Copernicus GmbH. https://doi.org/10.5194/egusphere-2025-1022
Zhang, C., Gu, B., Liang, X., Lam, S. K., Zhou, Y., & Chen, D. (2024). The role of nitrogen management in achieving global sustainable development goals. Resources, Conservation and Recycling, 201, 107304. https://doi.org/10.1016/j.resconrec.2023.107304
Zhu, G., Shangguan, Z., Hu, X., & Deng, L. (2021). Effects of land use changes on soil organic carbon, nitrogen and their losses in a typical watershed of the Loess Plateau, China. Ecological Indicators, 133, 108443. https://doi.org/10.1016/j.ecolind.2021.108443
Umi Munawaroh , UPN Veteran Yogyakarta University, Indonesia
Department of Soil Sciences, Faculty of Agriculture, UPN “Veteran” Yogyakarta, Indonesia
Muhamad Khoiru Zaki , Universitas Gadjah Mada, Indonesia
Department of Agricultural and Biosystem Engineering, Faculty of Agricultural Technology, Universitas Gadjah Mada, Indonesia